If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=102
We move all terms to the left:
3y^2-(102)=0
a = 3; b = 0; c = -102;
Δ = b2-4ac
Δ = 02-4·3·(-102)
Δ = 1224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1224}=\sqrt{36*34}=\sqrt{36}*\sqrt{34}=6\sqrt{34}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{34}}{2*3}=\frac{0-6\sqrt{34}}{6} =-\frac{6\sqrt{34}}{6} =-\sqrt{34} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{34}}{2*3}=\frac{0+6\sqrt{34}}{6} =\frac{6\sqrt{34}}{6} =\sqrt{34} $
| −4x2−28x−48=0 | | |a|=−|a| | | -2a+(2)=0 | | 11+15v=13v | | 4x+1.5x=7.6 | | 7y+4=36+8 | | 15s-9s-5s=8 | | 23-x7=33 | | 60.6h=1.8 | | 19x+4+8x-2+70=180 | | X2+100x-9600=0 | | 16n+4n-13n=14 | | 7c=5c+4 | | q-q+5q-4q=19 | | 18t=1/2 | | 9u+u-9u-u+3u=6 | | 4/11-x=-7/11 | | -10(-8+x=-90 | | -7(3-8c)=18 | | -22=2+4u | | (-6+x/4)=-3 | | 12x+2x=-65+5x | | 24(e+4)=216 | | 15y-12y+3y=18 | | 4/12-x=8/12 | | 55-3x=7x-4 | | 9e=4e+4 | | 8a-2a+a-6a=18 | | 7x-4-8x=20 | | 5+c=-9 | | 1x+5=9x+3 | | 11x+34=2x-1 |